Книги
  • @
  • «»{}∼
Функциональные сплайны в топологических векторных пространствах

Функциональные сплайны в топологических векторных пространствах

3711528
757 руб.
Добавить в корзину
Рекомендуем также
Описание
Настоящая монография является первой из трех запланированных автором к изданию книг, объединенных общей темой "Теория приближений и численный анализ в топологических пространствах". В ней вводится понятие функционального сплайна как точного решения системы линейных функциональных уравнений в пространствах с локально выпуклой топологией. В основе метода его построения лежит теория двойственности в локально выпуклых пространствах. Вариационное решение конечной системы называется алгебраическим сплайном. Он строится в виде конечного разложения по точно вычисленному семейству функций, двойственному для заданных функционалов системы.

Если система бесконечна, исследуются вопросы выбора векторных пространств, в которых ищется решение, топологий в них, и формулируются требования к свойствам заданного счетного семейства функционалов системы с тем, чтобы дуальное для него счетное множество функций образовало базис Шаудера в соответствующем топологическом пространстве. Дается способ его точного вычисления. Решение системы лилейных функциональпыя уравнений строится в форме разложения по данному базису. Приводятся примеры приложения метода к теории приближений. Аппроксимирующие конструкции по аналогии со сплайнами Шенберга названы топологическими сплайнами. Рассмотренная весьма общая ситуация охватывает и классическую теорию сплайнов. Такое определение сплайна в общем случае не связано с выбором сетки.

Метод проективного предела используется для построения базисов в ядерных пространствах. В частности, переходом к проективному пределу в последовательности пространств Соболева вычислен базис в пространствах Шварца.
Установлена связь рассмотренной теории с классической теорией базисов. Классические семейства функций: алгебраические многочлены, тригонометрические многочлены и семейство показательных функций вычислены как базисные в предельных пространствах для некоторых счетных последовательностей пространств с полускалярным произведением.

Книга предназначена для студентов и аспирантов физико-математических специальностей, а также научных работников и преподавателей, интересующихся современными вопросами численного анализа. В книге рассматриваются не только вопросы теории, но и большое количество практических задач.