Код товара: 31903057

Covering, Correspondence and Noncommutative Geometry

Название
Covering, Correspondence and Noncommutative Geometry
Тип
Печатная книга
Издательство
Год выпуска
2011
Количество страниц
108
Перейти к описанию
Продавец: OZON
Продавец:
OZON
  • Безопасная оплата:
    Наличными, банковской картой и еще 2 cпособа
  • Товар обмену и возврату не подлежит

Описание

We construct an additive category whose objects are embedded graphs (or in particular knots) in the 3-sphere and where morphisms are formal linear combinations of 3-manifolds. Our definition of correspondences relies on the Alexander branched covering theorem, which shows that all compact oriented 3-manifolds can be realized as branched coverings of the 3-sphere, with branched locus an embedded (not necessarily connected) graph. The way in which a given 3-manifold is realized as a branched cover is highly not unique. An interesting homology theory for knots and links that we consider here is the one introduced by Khovanov. We recall the basic definition and properties of Khovanov homology and we give some explicit examples of how it is computed for very simple cases such as the Hopf link. We also recall, the construction of the cobordism group for links and for knots and their relation. We then consider the question of constructing a similar cobordism group for embedded graphs in the 3-sphere.

Характеристики

Название
Covering, Correspondence and Noncommutative Geometry
Тип
Печатная книга
Издательство
Год выпуска
2011
Количество страниц
108
Язык издания
Английский
Вес в упаковке, г
501
Информация о технических характеристиках, комплекте поставки, стране изготовления, внешнем виде и цвете товара носит справочный характер и основывается на последних доступных к моменту публикации сведениях

Издательство

Отзывы