Ранний доступ к распродаже только для Premium закончится через
0 дней 0 часов 0 минут
Успеть!
Probabilistic Graphical Models: Principles and Techniques | Daphne Koller, Nir Friedman
Оставить отзыв
OZON
Код товара: 5871727

Probabilistic Graphical Models: Principles and Techniques | Daphne Koller, Nir Friedman

Оставить отзыв
Тип книги:
Автор
Серия
Издательство
Год выпуска
2009
Автор на обложке
Daphne Koller, Nir Friedman
Перейти к описанию

О книге

Most tasks require a person or an automated system to reason - to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is
Товар закончился
Продавец:
OZON
  • Безопасная оплата: Банковской картой и ещe несколько способов оплаты
  • Возврат 7 дней
Гарантия легкого возврата
До 7 дней на возврат, полная гарантия

Описание

Most tasks require a person or an automated system to reason - to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.
Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Характеристики

Автор
Серия
Издательство
Год выпуска
2009
Автор на обложке
Daphne Koller, Nir Friedman
Формат издания
205x230
Количество страниц
1208
Язык издания
Английский
Тип обложки
Твердый переплет
ISBN
9780262013192
Вес в упаковке, г
2245
Информация о технических характеристиках, комплекте поставки, стране изготовления, внешнем виде и цвете товара носит справочный характер и основывается на последних доступных к моменту публикации сведениях

Персоны

  • Daphne Koller Автор
  • Nir Friedman Автор

Издательства

  • The MIT Press Издательство
Отзывы
Помогите другим пользователям с выбором — будьте первым, кто поделится своим мнением об этом товаре.